

Science Department Marine Science Curriculum

Revised by: Mrs. Carly Johnson, Nursing Services and Rutgers Allied Health Programming

Effective Date: Fall 2019, Revised July 2021 Climate Change

Standards in Action: Climate Change Earth's climate is now changing faster than at any point in the history of modern civilization, primarily as a result of human activities. Global climate change has already resulted in a wide range of impacts across New Jersey and in many sectors of its economy. The addition of academic standards that focus on climate change is important so that all students will have a basic understanding of the climate system, including the natural and human-caused factors that affect it. The underpinnings of climate change span across physical, life, as well as Earth and space sciences. The goal is for students to understand climate science as a way to inform decisions that improve quality of life for themselves, their community, and globally and to know how engineering solutions can allow us to mitigate impacts, adapt practices, and build resilient systems. The topic of climate change can easily be integrated into science classes. At each grade level in which systems thinking, managing uncertainty, and building arguments based on multiple lines of data are included, there are opportunities for students to develop essential knowledge and skills that will help them understand the impacts of climate change on humans, animals, and the environment. For example, in the earlier grades, students can use data from first hand investigations of the school-yard habitat to justify recommendations for design improvements to the school-yard habitat for plants, animals, and humans. In the middle grades, students use resources from New Jersey Department of Environmental Protection, the National Oceanic and Atmospheric Administration (NOAA), and National Aeronautics and Space Administration (NASA), to inform their actions as they engage in designing, testing, and modifying an engineered solution to mitigate the impact of climate change on their community. In high school, students can construct models they develop of a proposed solution to mitigate the negative health effects of unusually high summer temperatures resulting from heat islands in cities across the globe and share in the appropriate setting. (NJDOE, Standards Draft Approval, 2020)

Climate Change Connection: The entire course for Marine Science is written from the perspective of human impact and climate change. All of the units within the curriculum have specific investigative questions that address climate change, its effects on aquatic ecosystems and investigations into how to combat those effects, both locally and globally. The unit specifically on "Humans and the Sea", highlights the many links of causation between human activity, climate change and the response of our oceans.

Number of Weeks Running	Unit
September - June	
(56 minute block base)	
2 weeks	Introduction to Marine Science
4 weeks	The World's Oceans
14 weeks	Organisms of the Sea
10 weeks	Marine Ecology and Ecosystems
3 weeks	Humans and the Sea

Unit 1: Introduction to Marine Science

The world's oceans are a vast place and we do not know all that much about them in comparison to other areas of science. The oceans of the world are home to an array of creatures and ecosystems just waiting to be discovered. This unit will introduce students to the concept of marine science and all that encompasses the area of study. Students will examine the roots of the exploration of aquatic environments, explore some of the work that scientists are doing and get a foundational understanding of marine science as a cohesive area of study. Students will gain an understanding of our exploration of the oceans of the world and how our understanding of the ocean has changed over time.

Recommended Pacing

	Tree on mineracu Tuemg
2 weeks	
Standards	
HS-LS2-6.	Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem
HS-LS2-2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
HS-ESS3-4	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems
HS-LS4-5	Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species
HS-ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for

solutions that account for societal needs and wants.

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show how relationships among variables between systems and their components in the natural and designed worlds.

 Develop a model based on evidence to illustrate the relationships between systems or components of a system. (HS-LS2-5)

Using Mathematics and Computational Thinking Mathematical and computational thinking in 9-12 builds on K-8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

- Use mathematical and/or computational representations of phenomena or design solutions to support explanations. (HS-LS2-1)
- Use mathematical representations of phenomena or design solutions to support and revise explanations. (HS-LS2-2)
- Use mathematical representations of phenomena or design solutions to support claims. (HS-LS2-4)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

- Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-LS2-3)
- Design, evaluate, and refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-LS2-7)

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

- Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-LS2-6)
- Evaluate the evidence behind currently accepted explanations to determine the merits of arguments. (HS-LS2-8)

Connections to Nature of Science

Scientific Knowledge is Open to Revision in Light of New Evidence

- Most scientific knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence. (HS-LS2-2),(HS-LS2-3)
- Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and evidence that may result in revision of an explanation. (HS-LS2-6),(HS-LS2-8)

Disciplinary Core Ideas

LS2.A: Interdependent Relationships in Ecosystems

 Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. These limits result from such factors as the availability of living and nonliving resources and from such challenges such as predation, competition, and disease.
 Organisms would have the capacity to produce populations of great size were it not for the fact that environments and resources are finite. This fundamental tension affects the abundance (number of individuals) of species in any given ecosystem. (HS-LS2-1),(HS-LS2-2)

LS2.B: Cycles of Matter and Energy Transfer in Ecosystems

- Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes. (HS-LS2-3)
- Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward, to produce growth and release energy in cellular respiration at the higher level. Given this inefficiency, there are generally fewer organisms at higher levels of a food web. Some matter reacts to release energy for life functions, some matter is stored in newly made structures, and much is discarded. The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil, and they are combined and recombined in different ways. At each link in an ecosystem matter and energy are conserved. (HS-LS2-4)
- Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. (HS-LS2-5)

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

- A complex set of interactions within an
 ecosystem can keep its numbers and types of
 organisms relatively constant over long periods
 of time under stable conditions. If a modest
 biological or physical disturbance to an
 ecosystem occurs, it may return to its more or
 less original status (i.e., the ecosystem is
 resilient), as opposed to becoming a very
 different ecosystem. Extreme fluctuations in
 conditions or the size of any population,
 however, can challenge the functioning of
 ecosystems in terms of resources and habitat
 availability. (HS-LS2-2),(HS-LS2-6)
- Moreover, anthropogenic changes (induced by human activity) in the environment—including habitat destruction, pollution, introduction of invasive species, overexploitation, and climate change—can disrupt an ecosystem and threaten the survival of some species. (HS-LS2-7)

LS2.D: Social Interactions and Group Behavior

 Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives. (HS-LS2-8)

LS4.D: Biodiversity and Humans

- Biodiversity is increased by the formation of new species (speciation) and decreased by the loss of species (extinction). (secondary to HS-LS2-7)
- Humans depend on the living world for the resources and other benefits provided by biodiversity. But human activity is also having adverse impacts on biodiversity through overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change. Thus sustaining biodiversity so that ecosystem functioning and productivity are maintained is essential to supporting and enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value. (secondary to HS-LS2-7) (Note: This Disciplinary Core Idea is also addressed by HS-LS4-6.)

PS3.D: Energy in Chemical Processes

 The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. (secondary to HS-LS2-5)

ETS1.B: Developing Possible Solutions

 When evaluating solutions it is important to take into account a range of constraints including cost, safety, reliability and aesthetics and to consider social, cultural and environmental impacts. (secondary to HS-LS2-7)

Crosscutting Concepts

Cause and Effect

 Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-LS2-8)

Scale, Proportion, and Quantity

- The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. (HS-LS2-1)
- Using the concept of orders of magnitude allows one to understand how a model at one scale relates to a model at another scale. (HS-LS2-2)

Systems and System Models

 Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales. (HS-LS2-5)

Energy and Matter

- Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems. (HS-LS2-4)
- Energy drives the cycling of matter within and between systems. (HS-LS2-3)

Stability and Change

 Much of science deals with constructing explanations of how things change and how they remain stable. (HS-LS2-6),(HS-LS2-7)

Interdisciplinary Connections	
NJSLSA.R1	Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
NJSLSA.R2	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.
RI.11-12.1 RI.9-10.1	Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain.
NJSLSA.W1	Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence
Integration of Te	echnology
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and create and communicate knowledge
8.2	All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment
Career Readines	s, Life Literacies and Key Skills
9.1.12.CFR.3	Research companies with corporate governance policies supporting the common good and human rights.
9.4.12.CI.1	Demonstrate the ability to reflect, analyze, and use creative skills and ideas (e.g., 1.1.12prof.CR3a).
9.4.12.CT.1	Identify problem-solving strategies used in the development of an innovative product or practice (e.g., 1.1.12acc.C1b, 2.2.12.PF.3).
9.4.12.CT.3	Enlist input from a variety of stakeholders (e.g., community members, experts in the field) to design a service learning activity that addresses a local or global issue (e.g., environmental justice).
9.4.12.GCA.1	Collaborate with individuals to analyze a variety of potential solutions to climate change effects and determine why some solutions (e.g., political. economic, cultural) may work better than others (e.g., SL.11-12.1., HS-ETS1-1, HS-ETS1-2, HS-ETS1-4, 6.3.12.GeoGI.1, 7.1.IH.IPERS.6, 7.1.IL.IPERS.7, 8.2.12.ETW.3).
9.4.12.IML.5	Evaluate, synthesize, and apply information on climate change from various sources appropriately (e.g., 2.1.12.CHSS.6, S.IC.B.4, S.IC.B.6, 8.1.12.DA.1, 6.1.12.GeoHE.14.a, 7.1.AL.PRSNT.2).

9.4.12.IML.6	Use various types of media to produce and store information on climate change for different purposes and audiences with sensitivity to cultural, gender, and age diversity (e.g., NJSLSA.SL5).
9.4.12.IML.7	Develop an argument to support a claim regarding a current workplace or societal/ethical issue such as climate change (e.g., NJSLSA.W1, 7.1.AL.PRSNT.4).

https://www.sustainablejerseyschools.com/resources/resource-library/climate-change-curriculum/

Video: Introduction to the History of Earth's Oceans

Exploration of Marine Science Careers Project

- Marine Careers I
- Marine Careers II

How do we explore our oceans?

- NOAA Excursions and Expeditions
- Ocean Exploration Vessels

Where is the study of Marine Science right now?

• Marine Science News NOAA

Tier 1 Modifications and Accommodations

Including special education students, Multilingual Language Learners (MLLs), students at risk of school failure, gifted and talented students, and students with 504 plans;

Teachers can choose from any of the suggested modifications below based upon teaching style, learner need and instructional practices.

General Modifications for students struggling to learn:

- Focus on building relationships in the classroom.
- Control the stressors for the student and manage alternate pathways for completion of assignments.
- Provide feedback utilizing a growth mindset and praise what is done correctly based upon effort, attitude and strategy.
- Boost engagement with material by providing opportunities of differentiation, group work and alternative assignments/assessments where appropriate.

MLL

- Provide additional wait time for student responses to questions to allow students the ability to undergo the process of translation between languages, composition of response and attempted response.
- Simplification of sentence structure and repetition of questions/sentences exactly as stated before trying to rephrase to allow MLL students to hear the sentence and try to comprehend it.
- Rephrase idioms and teach their meanings as when learning a new language, translations are often very literal. IE "Take a stab at it." Ensure students understand what is meant.
- Use directed reading activities. Ensure preview of text before assigned/read, provide pre-reading questions about the main idea and offer help utilizing key words.
- Allow the use of Google Translate where appropriate.
- Utilize bilingual reading texts provided by the STC program.

G/T

Utilize differentiation in the areas of acceleration, enrichment, and grouping. Examples include, but are not limited to:

- interdisciplinary and problem-based assignments with planned scope and sequence
- advance, accelerated, or compacted content
- abstract and advanced higher-level thinking
- allowance for individual student interests
- assignments geared to development in areas of affect, creativity, cognition, and research skills
- complex, in-depth assignments
- diverse enrichment that broadens learning
- variety in types of resources

• internships, mentorships and independent study where applicable

504/IEP

Modifications and accommodations must be aligned to stated plan and uphold expectations of the plan lawfully. Every student requires a different set of accommodations based upon need. Examples specific to science practice include, but are not limited to:

- Note taker or lab assistant
- Group lab assignments
- Use of scribe
- Adjustable tables and lab equipment within reach
- Classrooms, labs and field trips in accessible locations
- Additional time and separate room for test taking
- Additional time for in-class assignments
- Additional time in lab
- Visual and tactile instructional demonstrations
- Computer with voice output, spelling and grammar checker
- Seating in the front of the class
- Tactile drawings and graphs, and three-dimensional models
- Assignments in electronic format
- Large-print handouts, lab signs and equipment labels
- TV monitor connected to microscope to enlarge images
- Computer equipped to enlarge screen characters and images
- Auditory lab warning signals
- Adaptive lab equipment (talking calculators, talking thermometers, light probes, tactile timers)
- Staples on sticks to indicate units of measurement
- Visual warning system for lab emergencies

Career Readiness, Life Literacies, and Key Skills NJSLS

Please select all standards that apply to this unit of study:

- ✓ Act as a responsible and contributing citizen and employee.
- ✓ Apply appropriate academic and technical skills.
- ✓ Attend to personal health and financial well being.
- ✓ Communicate clearly and effectively and with reason.
- ✓ Consider the environmental social and economic impacts of decisions.
- ✓ Demonstrate creativity and innovation.
- ✓ Employ valid and reliable research strategies.
- ✓ Utilize critical thinking to make sense of problems and persevere in solving them.
- ✓ Model integrity, ethical leadership, and effective management.
- ✓ Plan education and career paths aligned to personal goals.
- ✓ Use technology to enhance productivity.
- ✓ Work productively in teams while using cultural global competence.

Suggestions on integrating these standards can be found at:https://www.nj.gov/education/standards/clicks/

LINKS TO CAREERS:

https://www.marineinsight.com/careers-2/a-list-of-unique-and-interesting-marine-careers/ https://www.marinecareers.net/

Unit 2: The World's Oceans

Earth's oceans are home to a variety of organisms adapted to the special conditions of the sea. The characteristics of these organisms and the variety of marine life are the result of the many properties of the ocean. This unit provides a survey of the developmental history and the current structure of the ocean basins as well as a discussion of the properties of seawater and of ocean circulation processes. Students will investigate the process of species evolution of ocean inhabitants as related to the above and view the marine environment through various lenses and points of view dependent upon different scales of time and distance. In this unit, understanding of the ocean as a habitat will be driven through a foundation of ocean development and processes such as seafloor spreading and the Water Cycle.

Recommended Pacing

4 weeks

Standards	
HS-LS1-6	Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules
HS-LS1-7	Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting in a net transfer of energy.
HS-LS2-1	Use mathematical and/or computational representations to support explanations of factors that affect the carrying capacity of ecosystems at different scales.
HS-LS2-2	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales
HS-LS2-4	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem
HS-LS2-5	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere
HS-LS2-6	Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem
HS-LS3-3	Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population
HS-LS4-6	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity
HS-ESS1-5	Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks

HS-ESS2-5	Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.
HS-ESS2-6	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere
HS-ESS2-7	Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.

- the natural and designed worlds.

 Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS1-2)
 - Use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS1-4),(HS-LS1-5), (HS-LS1-7)

Planning and Carrying Out Investigations

Planning and carrying out in 9-12 builds on K-8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

 Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly (HSL S1-3)

design accordingly. (HS-LS1-3) Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 9-12 builds on K-8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles,

- Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-LS1-1)
- Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-LS1-6)

Connections to Nature of Science

Scientific Investigations Use a Variety of Methods

 Scientific inquiry is characterized by a common set of values that include: logical thinking, precision, open-mindedness, objectivity, skepticism, replicability of results, and honest and ethical reporting of findings. (HS-LS1-3)

Disciplinary Core Ideas

LS1.A: Structure and Function

- Systems of specialized cells within organisms help them perform the essential functions of life. (HS-LS1-1)
- All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells. (HS-LS1-1) (Note: This Disciplinary Core Idea is also addressed by HS-LS3-1.)
- Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level. (HS-LS1-2)
- Feedback mechanisms maintain a living system's internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system. (HS-LS1-3)

LS1.B: Growth and Development of Organisms

 In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism. (HS-LS1-4)

LS1.C: Organization for Matter and Energy Flow in Organisms

- The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen. (HS-LS1-5)
- The sugar molecules thus formed contain carbon, hydrogen, and oxygen: their hydrocarbon backbones are used to make amino acids and other carbon-based molecules that can be assembled into larger molecules (such as proteins or DNA), used for example to form new cells. (HS-LS1-6)
- As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products. (HS-LS1-6),(HS-LS1-7)
- As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Cellular respiration is a chemical process in which the bonds of food molecules and oxygen molecules are broken and new compounds are formed that can transport energy to muscles. Cellular respiration also releases the energy needed to maintain body temperature despite ongoing energy transfer to the surrounding environment. (HS-LS1-7)

Crosscutting Concepts

Systems and System Models

 Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales. (HS-LS1-2),(HS-LS1-4)

Energy and Matter

- Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS-LS1-5), (HS-LS1-6)
- Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems. (HS-LS1-7)

Structure and Function

 Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem. (HS-LS1-1)

Stability and Change

 Feedback (negative or positive) can stabilize or destabilize a system. (HS-LS1-3)

Interdisciplinary Connections

NJSLSA.R1	Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
NJSLSA.R2	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.
RI.11-12.1 RI.9-10.1	Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain.
NJSLSA.W1	Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence
Integration of T	echnology
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and create and communicate knowledge
8.2	All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment
Career Readine	ss, Life Literacies and Key Skills
9.1.12.CFR.3	Research companies with corporate governance policies supporting the common good and human rights.
9.4.12.CI.1	Demonstrate the ability to reflect, analyze, and use creative skills and ideas (e.g., 1.1.12prof.CR3a).
9.4.12.CT.1	Identify problem-solving strategies used in the development of an innovative product or practice (e.g., 1.1.12acc.C1b, 2.2.12.PF.3).
9.4.12.CT.3	Enlist input from a variety of stakeholders (e.g., community members, experts in the field) to design a service learning activity that addresses a local or global issue (e.g., environmental justice).
9.4.12.GCA.1	Collaborate with individuals to analyze a variety of potential solutions to climate change effects and determine why some solutions (e.g., political. economic, cultural) may work better than others (e.g., SL.11-12.1., HS-ETS1-1, HS-ETS1-2, HS-ETS1-4, 6.3.12.GeoGI.1, 7.1.IH.IPERS.6, 7.1.IL.IPERS.7, 8.2.12.ETW.3).
9.4.12.IML.5	Evaluate, synthesize, and apply information on climate change from various sources appropriately (e.g., 2.1.12.CHSS.6, S.IC.B.4, S.IC.B.6, 8.1.12.DA.1, 6.1.12.GeoHE.14.a, 7.1.AL.PRSNT.2).
9.4.12.IML.6	Use various types of media to produce and store information on climate change for different purposes and audiences with sensitivity to cultural, gender, and age diversity (e.g., NJSLSA.SL5).

9.4.12.IML.7

Develop an argument to support a claim regarding a current workplace or societal/ethical issue such as climate change (e.g., NJSLSA.W1, 7.1.AL.PRSNT.4).

https://www.sustainablejerseyschools.com/resources/resource-library/climate-change-curriculum/

Sea Floor Mapping Resources

Glencoe Online Mapping Activity (NEED ADOBE TO DO)

Lab Activity Hands-on: Simulating SONAR Mapping

Natural Disasters Resource

Tides Resources and Activity (USE EDUCATION TAB at top of page for all resources and links)

Density of Seawater

Sea Water Density Lab Example

Fluidity of Water on Earth Activity

Water Cycle Resource

Water Cycle Resource II

Water Desalination Activity

Making of the Ocean Floor Activity

Basics of Plate Tectonics Lesson

Tier 1 Modifications and Accommodations

Including special education students, Multilingual Language Learners (MLLs), students at risk of school failure, gifted and talented students, and students with 504 plans;

Teachers can choose from any of the suggested modifications below based upon teaching style, learner need and instructional practices.

General Modifications for students struggling to learn:

- Focus on building relationships in the classroom.
- Control the stressors for the student and manage alternate pathways for completion of assignments.
- Provide feedback utilizing a growth mindset and praise what is done correctly based upon effort, attitude and strategy.
- Boost engagement with material by providing opportunities of differentiation, group work and alternative assignments/assessments where appropriate.

MLL

- Provide additional wait time for student responses to questions to allow students the ability to undergo the process of translation between languages, composition of response and attempted response.
- Simplification of sentence structure and repetition of questions/sentences exactly as stated before trying to rephrase to allow MLL students to hear the sentence and try to comprehend it.
- Rephrase idioms and teach their meanings as when learning a new language, translations are often very literal. IE "Take a stab at it." Ensure students understand what is meant.
- Use directed reading activities. Ensure preview of text before assigned/read, provide pre-reading questions about the main idea and offer help utilizing key words.
- Allow the use of Google Translate where appropriate.
- Utilize bilingual reading texts provided by the STC program.

G/T

Utilize differentiation in the areas of acceleration, enrichment, and grouping. Examples include, but are not limited to:

- interdisciplinary and problem-based assignments with planned scope and sequence
- advance, accelerated, or compacted content
- abstract and advanced higher-level thinking
- allowance for individual student interests
- assignments geared to development in areas of affect, creativity, cognition, and research skills
- complex, in-depth assignments
- diverse enrichment that broadens learning

- variety in types of resources
- internships, mentorships and independent study where applicable

504/IEP

Modifications and accommodations must be aligned to stated plan and uphold expectations of the plan lawfully. Every student requires a different set of accommodations based upon need. Examples specific to science practice include, but are not limited to:

- Note taker or lab assistant
- Group lab assignments
- Use of scribe
- Adjustable tables and lab equipment within reach
- Classrooms, labs and field trips in accessible locations
- Additional time and separate room for test taking
- Additional time for in-class assignments
- Additional time in lab
- Visual and tactile instructional demonstrations
- Computer with voice output, spelling and grammar checker
- Seating in the front of the class
- Tactile drawings and graphs, and three-dimensional models
- Assignments in electronic format
- Large-print handouts, lab signs and equipment labels
- TV monitor connected to microscope to enlarge images
- Computer equipped to enlarge screen characters and images
- Auditory lab warning signals
- Adaptive lab equipment (talking calculators, talking thermometers, light probes, tactile timers)
- Staples on sticks to indicate units of measurement
- Visual warning system for lab emergencies

Career Readiness, Life Literacies, and Key Skills NJSLS

Please select all standards that apply to this unit of study:

- ✓ Act as a responsible and contributing citizen and employee.
- ✓ Apply appropriate academic and technical skills.
- ✓ Attend to personal health and financial well being.
- ✓ Communicate clearly and effectively and with reason.
- ✓ Consider the environmental social and economic impacts of decisions.
- ✓ Demonstrate creativity and innovation.
- ✓ Employ valid and reliable research strategies.
- ✓ Utilize critical thinking to make sense of problems and persevere in solving them.
- ✓ Model integrity, ethical leadership, and effective management.
- ✓ Plan education and career paths aligned to personal goals.
- ✓ Use technology to enhance productivity.
- ✓ Work productively in teams while using cultural global competence.

Suggestions on integrating these standards can be found at: https://www.nj.gov/education/standards/clicks/

LINKS TO CAREERS:

https://www.marineinsight.com/careers-2/a-list-of-unique-and-interesting-marine-careers/ https://www.marinecareers.net/

Unit 3: Organisms of the Sea

To cope with the complexity and variety of the sum total of marine organisms, we divide these complex systems into smaller subunits and organize these units by relating them to the who system on the basis of certain characteristics. The purpose of this unit is to explore marine organisms within their different taxonomic classifications, focusing on their specific characteristics and adaptations. The organisms are then related back to their role within the ecosystem and the concept of interdependence. Students will be exposed to microorganisms, primary multicellular producers, marine invertebrates, and marine vertebrates with an emphasis on structure and how it relates to function.

Recommended Pacing

14 weeks

	Standards		
HS-LS1-2	Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms		
HS-LS1-3	Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis		
HS-LS1-4	Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms		
HS-LS1-5	Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy		
HS-LS2-3	Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions		
HS-LS2-4	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem		
HS-LS2-2	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales		
HS-LS2-6	Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem		
HS-LS3-2	Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors		
HS-LS3-3	Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.		
HS-LS4-5	Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.		

HS-LS4-6

Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in 9-12 builds on K-8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.

 Ask questions that arise from examining models or a theory to clarify relationships. (HS-LS3-1)

Analyzing and Interpreting Data

Analyzing data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

 Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. (HS-LS3-3)

Engaging in Argument from Evidence

Engaging in argument from evidence in 9-12 builds on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

 Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. (HS-LS3-2)

Disciplinary Core Ideas

LS1.A: Structure and Function

 All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins. (secondary to HS-LS3-1) (Note: This Disciplinary Core Idea is also addressed by HS-LS1-1.)

LS3.A: Inheritance of Traits

 Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species' characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as-yet known function. (HS-LS3-1)

LS3.B: Variation of Traits

- In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. (HS-LS3-2)
- Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors. (HS-LS3-2),(HS-LS3-3)

Crosscutting Concepts

Cause and Effect

 Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-LS3-1), (HS-LS3-2)

Scale, Proportion, and Quantity

 Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). (HS-LS3-3)

Connections to Nature of Science

Science is a Human Endeavor

- Technological advances have influenced the progress of science and science has influenced advances in technology. (HS-LS3-3)
- Science and engineering are influenced by society and society is influenced by science and engineering. (HS-LS3-3)

Interdisciplinary Connections NJSLSA.R1 Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text. NJSLSA.R2 Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas. RI.11-12.1 Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to RI.9-10.1 support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain. NJSLSA.W Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence Integration of Technology 8.1 All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and create and communicate knowledge 8.2 All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment

Career Readiness, Life Literacies and Key Skills	
9.1.12.CFR. 3	Research companies with corporate governance policies supporting the common good and human rights.
9.4.12.CI.1	Demonstrate the ability to reflect, analyze, and use creative skills and ideas (e.g., 1.1.12prof.CR3a).
9.4.12.CT.1	Identify problem-solving strategies used in the development of an innovative product or practice (e.g., 1.1.12acc.C1b, 2.2.12.PF.3).
9.4.12.CT.3	Enlist input from a variety of stakeholders (e.g., community members, experts in the field) to design a service learning activity that addresses a local or global issue (e.g., environmental justice).
9.4.12.GCA .1	Collaborate with individuals to analyze a variety of potential solutions to climate change effects and determine why some solutions (e.g., political. economic, cultural) may work better than others (e.g., SL.11-12.1., HS-ETS1-1, HS-ETS1-2, HS-ETS1-4, 6.3.12.GeoGI.1, 7.1.IH.IPERS.6, 7.1.IL.IPERS.7, 8.2.12.ETW.3).
9.4.12.IML. 5	Evaluate, synthesize, and apply information on climate change from various sources appropriately (e.g., 2.1.12.CHSS.6, S.IC.B.4, S.IC.B.6, 8.1.12.DA.1, 6.1.12.GeoHE.14.a, 7.1.AL.PRSNT.2).
9.4.12.IML. 6	Use various types of media to produce and store information on climate change for different purposes and audiences with sensitivity to cultural, gender, and age diversity (e.g., NJSLSA.SL5).
9.4.12.IML. 7	Develop an argument to support a claim regarding a current workplace or societal/ethical issue such as climate change (e.g., NJSLSA.W1, 7.1.AL.PRSNT.4).

https://www.sustainablejerseyschools.com/resources/resource-library/climate-change-curriculum/

Marine Life Classification Resource

Classifying Invertebrates Activity

Marine Invertebrates Resource

Invertebrates Lesson

Marine Vertebrates Resource

Classifying Fish (non-oceanic creatures, basic fish classification)

Vertebrate Classification Module

Reproduction of Marine Life Resource

Salinity and Blood Chemistry of Fish

Fish Respiration

Shark Attack Database

Kelp Forest Lesson and Activity

Aquatic Plants and Algae

Diatoms

Dinoflagellates

Cyanobacteria

Tier 1 Modifications and Accommodations

Including special education students, Multilingual Language Learners (MLLs), students at risk of school failure, gifted and talented students, and students with 504 plans;

Teachers can choose from any of the suggested modifications below based upon teaching style, learner need and instructional practices.

General Modifications for students struggling to learn:

- Focus on building relationships in the classroom.
- Control the stressors for the student and manage alternate pathways for completion of assignments.
- Provide feedback utilizing a growth mindset and praise what is done correctly based upon effort, attitude and strategy.
- Boost engagement with material by providing opportunities of differentiation, group work and alternative assignments/assessments where appropriate.

MLL

- Provide additional wait time for student responses to questions to allow students the ability to undergo the process of translation between languages, composition of response and attempted response.
- Simplification of sentence structure and repetition of questions/sentences exactly as stated before trying to rephrase to allow MLL students to hear the sentence and try to comprehend it.
- Rephrase idioms and teach their meanings as when learning a new language, translations are often very literal. IE "Take a stab at it." Ensure students understand what is meant.
- Use directed reading activities. Ensure preview of text before assigned/read, provide pre-reading questions about the main idea and offer help utilizing key words.
- Allow the use of Google Translate where appropriate.
- Utilize bilingual reading texts provided by the STC program.

G/T

Utilize differentiation in the areas of acceleration, enrichment, and grouping. Examples include, but are not limited to:

- interdisciplinary and problem-based assignments with planned scope and sequence
- advance, accelerated, or compacted content
- abstract and advanced higher-level thinking
- allowance for individual student interests
- assignments geared to development in areas of affect, creativity, cognition, and research skills
- complex, in-depth assignments
- diverse enrichment that broadens learning
- variety in types of resources
- internships, mentorships and independent study where applicable

504/IEP

Modifications and accommodations must be aligned to stated plan and uphold expectations of the plan lawfully. Every student requires a different set of accommodations based upon need. Examples specific to science practice include, but are not limited to:

- Note taker or lab assistant
- Group lab assignments
- Use of scribe
- Adjustable tables and lab equipment within reach
- Classrooms, labs and field trips in accessible locations
- Additional time and separate room for test taking
- Additional time for in-class assignments
- Additional time in lab
- Visual and tactile instructional demonstrations
- Computer with voice output, spelling and grammar checker
- Seating in the front of the class
- Tactile drawings and graphs, and three-dimensional models
- Assignments in electronic format
- Large-print handouts, lab signs and equipment labels
- TV monitor connected to microscope to enlarge images
- Computer equipped to enlarge screen characters and images

- Auditory lab warning signals
- Adaptive lab equipment (talking calculators, talking thermometers, light probes, tactile timers)
- Staples on sticks to indicate units of measurement
- Visual warning system for lab emergencies

Career Readiness, Life Literacies, and Key Skills NJSLS

Please select all standards that apply to this unit of study:

- \checkmark Act as a responsible and contributing citizen and employee.
- ✓ Apply appropriate academic and technical skills.
- ✓ Attend to personal health and financial well being.
- ✓ Communicate clearly and effectively and with reason.
- ✓ Consider the environmental social and economic impacts of decisions.
- ✓ Demonstrate creativity and innovation.
- ✓ Employ valid and reliable research strategies.
- ✓ Utilize critical thinking to make sense of problems and persevere in solving them.
- ✓ Model integrity, ethical leadership, and effective management.
- ✓ Plan education and career paths aligned to personal goals.
- ✓ Use technology to enhance productivity.
- ✓ Work productively in teams while using cultural global competence.

Suggestions on integrating these standards can be found at: https://www.nj.gov/education/standards/clicks/

LINKS TO CAREERS:

https://www.marineinsight.com/careers-2/a-list-of-unique-and-interesting-marine-careers/ https://www.marinecareers.net/

Unit 4: Marine Ecology and Ecosystems

Life exists everywhere in the ocean. The type of life you encounter depends on the specific habitat. Every habitat has distinct abiotic factors that determine which organisms will, or will not, live there. Additionally, the organisms living in various ecosystems affect each other by interacting in complex ways. This unit covers the physical and chemical features of a variety of habitats, how the organisms living there are adapted to that habitat, and how they affect each other.

The possible ecosystems included are: Tidal communities/tide pools (rocky shores); Estuaries; Continental Shelf; Coral Reefs; Open Ocean (near the surface); Ocean Depths (aphotic zone).

Recommended Pacing

10 weeks

Standards

HS-LS2-6.	Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem
HS-LS2-2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
HS-ESS3-4	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems
HS-LS4-5	Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species
HS-ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

Analyze data using computational models in order to make valid and reliable scientific claims. (HS-ESS3-5)

Using Mathematics and Computational Thinking Mathematical and computational thinking in 9-12 builds on K-8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic

- Create a computational model or simulation of a phenomenon, designed device, process, or system. (HS-ESS3-3)
- Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-ESS3-6)

Constructing Explanations and Designing

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific knowledge, principles, and theories

- Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-ESS3-1)
- Design or refine a solution to a complex realworld problem, based on scientific knowledge, student-generated sources of evidence prioritized criteria, and tradeoff considerations. (HS-ESS3-4)

Engaging in Argument from Evidence Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

Evaluate competing design solutions to a real-world problem based on scientific ideas and principles, empirical evidence, and logical arguments regarding relevant factors (e.g. economic, societal, environmental, ethical considerations). (HS-ESS3-2)

Connections to Nature of Science

Scientific Investigations Use a Variety of Methods

- Science investigations use diverse methods and do not always use the same set of procedures
- to obtain data. (HS-ESS3-5) New technologies advance scientific knowledge. (HS-ESS3-5)

Scientific Knowledge is Based on Empirical Evidence

- Science knowledge is based on empirical evidence. (HS-ESS3-5)
- Science arguments are strengthened by multiple lines of evidence supporting a single explanation. (HS-ESS3-5)

Disciplinary Core Ideas

ESS2.D: Weather and Climate

Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (secondary to HS-ESS3-6)

ESS3.A: Natural Resources

- Resource availability has guided the development of human society. (HS-ESS3-1)
- All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks as well as benefits. New technologies and social regulations can change the balance of these factors. (HS-ESS3-2)

ESS3.B: Natural Hazards

 Natural hazards and other geologic events have shaped the course of human history; [they] have significantly altered the sizes of human populations and have driven human migrations. (HS-ESS3-1)

- ESS3.C: Human Impacts on Earth Systems

 The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources. (HS-ESS3-3)
- Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation. (HS-ESS3-4)

- ESS3.D: Global Climate Change

 Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts. (HS-ESS3-5)
- Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere and the biosphere interact and are modified in response to human activities. (HS-ESS3-6)

ETS1.B: Developing Possible Solutions

When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-ESS3-2),(secondary HS-ESS3-4)

Crosscutting Concepts

Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-ESS3-1)

Systems and System Models

When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (HS-ESS3-

Stability and Change

- Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. (HS-ESS3-3),(HS-ESS3-5)
- Feedback (negative or positive) can stabilize or destabilize a system. (HS-ESS3-4)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

- Modern civilization depends on major technological systems. (HS-ESS3-1),(HS-ESS3-3)
- Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (HS-ESS3-2),(HS-ESS3-4)
- New technologies can have deep impacts on society and the environment, including some that were not anticipated. (HS-ESS3-3)
- Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ESS3-2)

Connections to Nature of Science

Science is a Human Endeavor

Science is a result of human endeavors imagination, and creativity. (HS-ESS3-3)

Science Addresses Questions About the Natural and Material World

- Science and technology may raise ethical issues for which science, by itself, does not provide answers and solutions. (HS-ESS3-2)
- Science knowledge indicates what can happen in natural systems-not what should happen. The latter involves ethics, values, and human decisions about the use of knowledge. (HS-ESS3-
- Many decisions are not made using science alone, but rely on social and cultural contexts to resolve issues. (HS-ESS3-2)

NJSLSA.R1	Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
NJSLSA.R2	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.
RI.11-12.1 RI.9-10.1	Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain.
NJSLSA.W1	Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence
Integration of	Гесhnology
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and create and communicate knowledge
8.2	All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment
Career Reading	ess, Life Literacies and Key Skills
9.1.12.CFR.3	Research companies with corporate governance policies supporting the common good and human rights.
9.4.12.CI.1	Demonstrate the ability to reflect, analyze, and use creative skills and ideas (e.g., 1.1.12prof.CR3a).
9.4.12.CT.1	Identify problem-solving strategies used in the development of an innovative product or practice (e.g., 1.1.12acc.C1b, 2.2.12.PF.3).
9.4.12.CT.3	Enlist input from a variety of stakeholders (e.g., community members, experts in the field) to design a service learning activity that addresses a local or global issue (e.g., environmental justice).
9.4.12.GCA. 1	Collaborate with individuals to analyze a variety of potential solutions to climate change effects and determine why some solutions (e.g., political. economic, cultural) may work better than others (e.g., SL.11-12.1., HS-ETS1-1, HS-ETS1-2, HS-ETS1-4, 6.3.12.GeoGI.1, 7.1.IH.IPERS.6, 7.1.IL.IPERS.7, 8.2.12.ETW.3).
9.4.12.IML.5	Evaluate, synthesize, and apply information on climate change from various sources appropriately (e.g., 2.1.12.CHSS.6, S.IC.B.4, S.IC.B.6, 8.1.12.DA.1, 6.1.12.GeoHE.14.a, 7.1.AL.PRSNT.2).

9.4.12.IML.6	Use various types of media to produce and store information on climate change for different purposes and audiences with sensitivity to cultural, gender, and age diversity (e.g., NJSLSA.SL5).
9.4.12.IML.7	Develop an argument to support a claim regarding a current workplace or societal/ethical issue such as climate change (e.g., NJSLSA.W1, 7.1.AL.PRSNT.4).

https://www.sustainablejerseyschools.com/resources/resource-library/climate-change-curriculum/

Mapping Marine Ecosystems Activity

Marine Ecosystems and Biodiversity (3 activities, scroll down the page for links)

Oysters in the Chesapeake Bay Unit (4 modules, each associated activities and plans)

Tier 1 Modifications and Accommodations

Including special education students, Multilingual Language Learners (MLLs), students at risk of school failure, gifted and talented students, and students with 504 plans;

Teachers can choose from any of the suggested modifications below based upon teaching style, learner need and instructional practices.

General Modifications for students struggling to learn:

- Focus on building relationships in the classroom.
- Control the stressors for the student and manage alternate pathways for completion of assignments.
- Provide feedback utilizing a growth mindset and praise what is done correctly based upon effort, attitude and strategy.
- Boost engagement with material by providing opportunities of differentiation, group work and alternative assignments/assessments where appropriate.

MLL

- Provide additional wait time for student responses to questions to allow students the ability to undergo the process of translation between languages, composition of response and attempted response.
- Simplification of sentence structure and repetition of questions/sentences exactly as stated before trying to rephrase to allow MLL students to hear the sentence and try to comprehend it.
- Rephrase idioms and teach their meanings as when learning a new language, translations are often very literal. IE "Take a stab at it." Ensure students understand what is meant.
- Use directed reading activities. Ensure preview of text before assigned/read, provide pre-reading questions about the main idea and offer help utilizing key words.
- Allow the use of Google Translate where appropriate.
- Utilize bilingual reading texts provided by the STC program.

G/T

Utilize differentiation in the areas of acceleration, enrichment, and grouping. Examples include, but are not limited to:

- interdisciplinary and problem-based assignments with planned scope and sequence
- advance, accelerated, or compacted content
- abstract and advanced higher-level thinking
- allowance for individual student interests
- assignments geared to development in areas of affect, creativity, cognition, and research skills
- complex, in-depth assignments
- diverse enrichment that broadens learning
- variety in types of resources
- internships, mentorships and independent study where applicable

504/IEP

Modifications and accommodations must be aligned to stated plan and uphold expectations of the plan lawfully. Every student requires a different set of accommodations based upon need. Examples specific to science practice include, but are not limited to:

- Note taker or lab assistant
- Group lab assignments
- Use of scribe
- Adjustable tables and lab equipment within reach
- Classrooms, labs and field trips in accessible locations
- Additional time and separate room for test taking
- Additional time for in-class assignments
- Additional time in lab
- Visual and tactile instructional demonstrations
- Computer with voice output, spelling and grammar checker
- Seating in the front of the class
- Tactile drawings and graphs, and three-dimensional models
- Assignments in electronic format
- Large-print handouts, lab signs and equipment labels
- TV monitor connected to microscope to enlarge images
- Computer equipped to enlarge screen characters and images
- Auditory lab warning signals
- Adaptive lab equipment (talking calculators, talking thermometers, light probes, tactile timers)
- Staples on sticks to indicate units of measurement
- Visual warning system for lab emergencies

Career Readiness, Life Literacies, and Key Skills NJSLS

Please select all standards that apply to this unit of study:

- ✓ Act as a responsible and contributing citizen and employee.
- ✓ Apply appropriate academic and technical skills.
- ✓ Attend to personal health and financial well being.
- ✓ Communicate clearly and effectively and with reason.
- ✓ Consider the environmental social and economic impacts of decisions.
- ✓ Demonstrate creativity and innovation.
- ✓ Employ valid and reliable research strategies.
- ✓ Utilize critical thinking to make sense of problems and persevere in solving them.
- ✓ Model integrity, ethical leadership, and effective management.
- ✓ Plan education and career paths aligned to personal goals.
- ✓ Use technology to enhance productivity.
- ✓ Work productively in teams while using cultural global competence.

Suggestions on integrating these standards can be found at: https://www.nj.gov/education/standards/clicks/

LINKS TO CAREERS:

https://www.marineinsight.com/careers-2/a-list-of-unique-and-interesting-marine-careers/ https://www.marinecareers.net/

Unit 5: Humans and the Sea

Our exploitation of marine resources is now much more sophisticated, but unfortunately, has also become more destructive. This unit focuses on how humans interact with the sea, the resources that the sea contains, the destructive nature of our interactions, and how humans can be the solution to the problems we are causing in our world ocean.

Recommended Pacing

3 weeks

Standards	
HS-LS2-6.	Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem
HS-LS2-2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
HS-ESS3-4	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems
HS-LS4-5	Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species
HS-ETS1-1	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

Analyze data using computational models in order to make valid and reliable scientific claims. (HS-ESS3-5)

Using Mathematics and Computational Thinking Mathematical and computational thinking in 9-12 builds on K-8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic

- Create a computational model or simulation of a phenomenon, designed device, process, or system. (HS-ESS3-3)
- Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-ESS3-6)

Constructing Explanations and Designing

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific knowledge, principles, and theories

- Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-ESS3-1)
- Design or refine a solution to a complex realworld problem, based on scientific knowledge, student-generated sources of evidence prioritized criteria, and tradeoff considerations. (HS-ESS3-4)

Engaging in Argument from Evidence Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

Evaluate competing design solutions to a real-world problem based on scientific ideas and principles, empirical evidence, and logical arguments regarding relevant factors (e.g. economic, societal, environmental, ethical considerations). (HS-ESS3-2)

Connections to Nature of Science

Scientific Investigations Use a Variety of Methods

- Science investigations use diverse methods and do not always use the same set of procedures
- to obtain data. (HS-ESS3-5) New technologies advance scientific knowledge. (HS-ESS3-5)

Scientific Knowledge is Based on Empirical Evidence

- Science knowledge is based on empirical evidence. (HS-ESS3-5)
- Science arguments are strengthened by multiple lines of evidence supporting a single explanation. (HS-ESS3-5)

Disciplinary Core Ideas

ESS2.D: Weather and Climate

Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (secondary to HS-ESS3-6)

ESS3.A: Natural Resources

- Resource availability has guided the development of human society. (HS-ESS3-1)
- All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks as well as benefits. New technologies and social regulations can change the balance of these factors. (HS-ESS3-2)

ESS3.B: Natural Hazards

 Natural hazards and other geologic events have shaped the course of human history; [they] have significantly altered the sizes of human populations and have driven human migrations. (HS-ESS3-1)

- ESS3.C: Human Impacts on Earth Systems

 The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources. (HS-ESS3-3)
- Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation. (HS-ESS3-4)

- ESS3.D: Global Climate Change

 Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts. (HS-ESS3-5)
- Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere and the biosphere interact and are modified in response to human activities. (HS-ESS3-6)

ETS1.B: Developing Possible Solutions

When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-ESS3-2),(secondary HS-ESS3-4)

Crosscutting Concepts

Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-ESS3-1)

Systems and System Models

When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (HS-ESS3-

Stability and Change

- Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. (HS-ESS3-3),(HS-ESS3-5)
- Feedback (negative or positive) can stabilize or destabilize a system. (HS-ESS3-4)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

- Modern civilization depends on major technological systems. (HS-ESS3-1),(HS-ESS3-3)
- Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (HS-ESS3-2),(HS-ESS3-4)
- New technologies can have deep impacts on society and the environment, including some that were not anticipated. (HS-ESS3-3)
- Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ESS3-2)

Connections to Nature of Science

Science is a Human Endeavor

Science is a result of human endeavors imagination, and creativity. (HS-ESS3-3)

Science Addresses Questions About the Natural and Material World

- Science and technology may raise ethical issues for which science, by itself, does not provide answers and solutions. (HS-ESS3-2)
- Science knowledge indicates what can happen in natural systems-not what should happen. The latter involves ethics, values, and human decisions about the use of knowledge. (HS-ESS3-
- Many decisions are not made using science alone, but rely on social and cultural contexts to resolve issues. (HS-ESS3-2)

Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.
Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain.
Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence
Technology
All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and create and communicate knowledge
All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment
ess, Life Literacies and Key Skills
Research companies with corporate governance policies supporting the common good and human rights.
Demonstrate the ability to reflect, analyze, and use creative skills and ideas (e.g., 1.1.12prof.CR3a).
Identify problem-solving strategies used in the development of an innovative product or practice (e.g., 1.1.12acc.C1b, 2.2.12.PF.3).
Enlist input from a variety of stakeholders (e.g., community members, experts in the field) to design a service learning activity that addresses a local or global issue (e.g., environmental justice).
Collaborate with individuals to analyze a variety of potential solutions to climate change effects and determine why some solutions (e.g., political. economic, cultural) may work better than others (e.g., SL.11-12.1., HS-ETS1-1, HS-ETS1-2, HS-ETS1-4, 6.3.12.GeoGI.1, 7.1.IH.IPERS.6, 7.1.IL.IPERS.7, 8.2.12.ETW.3).
Evaluate, synthesize, and apply information on climate change from various sources appropriately (e.g., 2.1.12.CHSS.6, S.IC.B.4, S.IC.B.6, 8.1.12.DA.1, 6.1.12.GeoHE.14.a, 7.1.AL.PRSNT.2).
Use various types of media to produce and store information on climate change for different purposes and audiences with sensitivity to cultural, gender, and age diversity (e.g., NJSLSA.SL5).

9.4.12.IML.7

Develop an argument to support a claim regarding a current workplace or societal/ethical issue such as climate change (e.g., NJSLSA.W1, 7.1.AL.PRSNT.4).

https://www.sustainablejerseyschools.com/resources/resource-library/climate-change-curriculum/

Human Ocean Impact Lesson and Activities

Oil Spill Activity (use leveling extensions listed for HS)

Overfishing Activity

Human Impact Resources

Tier 1 Modifications and Accommodations

Including special education students, Multilingual Language Learners (MLLs), students at risk of school failure, gifted and talented students, and students with 504 plans;

Teachers can choose from any of the suggested modifications below based upon teaching style, learner need and instructional practices.

General Modifications for students struggling to learn:

- Focus on building relationships in the classroom.
- Control the stressors for the student and manage alternate pathways for completion of assignments.
- Provide feedback utilizing a growth mindset and praise what is done correctly based upon effort, attitude and strategy.
- Boost engagement with material by providing opportunities of differentiation, group work and alternative assignments/assessments where appropriate.

MLL

- Provide additional wait time for student responses to questions to allow students the ability to undergo the process of translation between languages, composition of response and attempted response.
- Simplification of sentence structure and repetition of questions/sentences exactly as stated before trying to rephrase to allow MLL students to hear the sentence and try to comprehend it.
- Rephrase idioms and teach their meanings as when learning a new language, translations are often very literal. IE "Take a stab at it." Ensure students understand what is meant.
- Use directed reading activities. Ensure preview of text before assigned/read, provide pre-reading questions about the main idea and offer help utilizing key words.
- Allow the use of Google Translate where appropriate.
- Utilize bilingual reading texts provided by the STC program.

G/T

Utilize differentiation in the areas of acceleration, enrichment, and grouping. Examples include, but are not limited to:

- interdisciplinary and problem-based assignments with planned scope and sequence
- advance, accelerated, or compacted content
- abstract and advanced higher-level thinking
- allowance for individual student interests
- assignments geared to development in areas of affect, creativity, cognition, and research skills
- complex, in-depth assignments
- diverse enrichment that broadens learning
- variety in types of resources
- internships, mentorships and independent study where applicable

504/IEP

Modifications and accommodations must be aligned to stated plan and uphold expectations of the plan lawfully. Every student requires a different set of accommodations based upon need. Examples specific to science practice include, but are not limited to:

- Note taker or lab assistant
- Group lab assignments
- Use of scribe
- Adjustable tables and lab equipment within reach
- Classrooms, labs and field trips in accessible locations

- Additional time and separate room for test taking
- Additional time for in-class assignments
- Additional time in lab
- Visual and tactile instructional demonstrations
- Computer with voice output, spelling and grammar checker
- Seating in the front of the class
- Tactile drawings and graphs, and three-dimensional models
- Assignments in electronic format
- Large-print handouts, lab signs and equipment labels
- TV monitor connected to microscope to enlarge images
- Computer equipped to enlarge screen characters and images
- Auditory lab warning signals
- Adaptive lab equipment (talking calculators, talking thermometers, light probes, tactile timers)
- Staples on sticks to indicate units of measurement
- Visual warning system for lab emergencies

Career Readiness, Life Literacies, and Key Skills NJSLS

Please select all standards that apply to this unit of study:

- ✓ Act as a responsible and contributing citizen and employee.
- ✓ Apply appropriate academic and technical skills.
- ✓ Attend to personal health and financial well being.
- ✓ Communicate clearly and effectively and with reason.
- ✓ Consider the environmental social and economic impacts of decisions.
- ✓ Demonstrate creativity and innovation.
- ✓ Employ valid and reliable research strategies.
- ✓ Utilize critical thinking to make sense of problems and persevere in solving them.
- ✓ Model integrity, ethical leadership, and effective management.
- ✓ Plan education and career paths aligned to personal goals.
- ✓ Use technology to enhance productivity.
- ✓ Work productively in teams while using cultural global competence.

Suggestions on integrating these standards can be found at: https://www.nj.gov/education/standards/clicks/

LINKS TO CAREERS:

https://www.marineinsight.com/careers-2/a-list-of-unique-and-interesting-marine-careers/ https://www.marinecareers.net/