

Science Department Physics Curriculum

Scope and Sequence

Number of Weeks Running September - June (56 minute block base)	Unit
6 weeks	Mechanics I
6 weeks	Mechanics II
5 weeks	Thermodynamics
5 weeks	Waves, Sound and Light
5 weeks	Electricity and Magnetism
3 weeks	Physics and the Earth

Unit 1

Mechanics I

Summary and Rationale

In this unit of study, students are expected to *plan and conduct investigations*, *analyze data and using math to support claims*, and *apply scientific ideas to solve design problems* students in order to develop an understanding of ideas related to why some objects keep moving and some objects fall to the ground. Students will also build an understanding of forces and Newton's second law. Finally, they will develop an understanding that the total momentum of a system of objects is conserved when there is no net force on the system. Students are also able to apply science and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. The crosscutting concepts of *patterns, cause and effect*, and *systems and systems models* are called out as organizing concepts for these disciplinary core ideas. Students are expected to demonstrate proficiency in *planning and*

conducting investigations, analyzing data and using math to support claims, and applying scientific ideas to solve design problems and to use these practices to demonstrate an understanding of the core ideas.

Students plan and conduct investigations and apply scientific ideas to make sense of Newton's law of gravitation and Coulomb's Law. They apply these laws to describe and predict the gravitational and electrostatic forces between objects. The crosscutting concept of *patterns* is called out as an organizing concept for this disciplinary core idea. Students are expected to demonstrate proficiency in *planning and conducting investigations* and *applying scientific ideas* to demonstrate an understanding of core ideas.

The disciplinary core idea of *Energy* is broken down into subcore ideas: *definitions of energy, conservation of energy* and *energy transfer*, and *the relationship between energy and forces*. Energy is understood as a quantitative property of a system that depends on the motion and interactions of matter, and the total change of energy in any system is equal to the total energy transferred into and out of the system. Students also demonstrate their understanding of engineering principles when they design, build, and refine devices associated with the conversion of energy. The crosscutting concepts of *cause and effect, systems and systems models, energy and matter, and the influence of science, engineering, and technology on society and the natural world* are further developed in the performance expectations. Students are expected to demonstrate proficiency in *developing and using models, planning and carrying out investigations, using computational thinking and designing solutions*, and they are expected to use these practices to demonstrate understanding of core ideas.

Recommended Pacing

6 weeks	
	Standards
HS-PS2-1	Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration
HS-PS2-2	Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
HS-PS2-3	Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision
HS-PS2-4	Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.
HS-ETS1-1	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants
HS-ETS1-2	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering
HS-ETS1-3	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts

HS-ETS1-4	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem
HS-PS3-1	Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known
HS-PS3-2	Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects)
HS-PS3-3	Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.
Interdisciplinar	y Connections
NJSLSA.R1	Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
NJSLSA.R2	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.
RI.11-12.1 RI.9-10.1	Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain.
NJSLSA.W1	Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence
MP.2	Reason abstractly and quantitatively
MP.4	Model with mathematics
HSN.Q.A.1	Use units as a way to understand problems and to guide the solution of mult-istep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
HSN.Q.A.2	Define appropriate quantities for the purpose of descriptive modeling.
Integration of T	Technology
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and create and communicate knowledge
8.2	All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment

Integration of Technology		
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and create and communicate knowledge	
8.2	All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment	
	Instructional Focus	
Enduring Und	erstandings:	Essential Questions:
Enduring Understandings: The linear and projectile motion of objects can be described mathematically through the use of kinematic principles, energy and momentum concepts, Newton's laws, and conservation laws. Motion in two dimensions can be treated separately in each dimension.		What terms are used in describing motion? How are acceleration, time, velocity, and distance related? How can motion be separated into two dimensions using vectors? What is the difference between vector and scalar quantities? How do objects move when they are only influenced by gravity? How does Newton's first law apply to the motion of objects? How do forces affect motion? How do objects interact through forces? How do action and reaction forces act on different masses? How is conservation of momentum used to analyze the motion and interaction of objects? How are concepts of energy used to analyze the motion of systems?
Objectives (SLO)		
Students will kn Terms used in motion, work, e Appropriate Sh quantities Appropriate m analysis e.g. "V Apply mathen quantities Newton's laws Calculation of s Relationship be	how: describing the quantities of displacement, energy, and momentum I units used in working with the above athematical terminology used in motion fectors" hatical relationships between the above to describe the motion of objects systematic momentum tween impulse and momentum	Students will be able to: Perform measurements using rulers and timers and use those measurements to calculate required quantities. Use video analysis software to analyze motion mathematically. Collaborate with classmates. State and apply Newton's laws. Differentiate between force and pressure. Apply Newton's second law to explain why objects accelerate at the same rate in free fall regardless of mass. Describe what happens to the speed of a falling object in the presence of air resistance.

Define the terms 'energy", "work", "power", "potential	Explain why at least two objects are involved whenever a
energy", and "kinetic energy"	force acts.
	Identify action and reaction forces.
	Describe how action reaction forces affect objects of
	Explain why action reaction forces do not cancel each
	other by using the concept of a system
	Calculate the momentum of an object or a system of
	objects.
	Perform calculations involving time, force, impulse and
	momentum.
	State and apply the law of conservation of momentum.
	Explain how the law of conservation of momentum is
	affected by the vector nature of momentum.
	Perform calculations involving work and power.
	Calculate the amount of work done mathematically.
	Calculate the amount of power generated during a process.
	mass and speed
	Calculate the amount of notential energy in a system using
	mass and height.
	Calculate the efficiency of simple machines.
Suggested Resource	es/Technology Tools
www.khanacademy.org	
Math Sets	
Videos	
Instructional Supplements	
Laboratory Investigations	
Measure the velocity of a wave using dominos rulers and the	imers.
Measure the amount of time it takes for a marble to travely	various distances on an inclined plane and develop a
relationship between the above two variables.	
Apply Newton's second law to studying how changing force	ces affect the acceleration of a constant mass. (Constant
Mass – Changing Force experiment).	
Measure the momentum of a system before and after a coll	
Compare the amount of work needed to raise a cart straight	i up, and raise it to the same height by using an inclined
Photo gates	
Logger Pro Software	
nhet Colorado	
Forces in One Dimension	
Forces and Motion	
Parachute and Terminal Velocity	
Gravity Force Lab	
Clavity Police Lab	
Electrostatic Kelationships	

Energy Basics

Modifications

Teachers can choose from any of the suggested modifications below based upon teaching style, learner need and instructional practices.

General Modifications for students struggling to learn:

- Focus on building relationships in the classroom.
- Control the stressors for the student and manage alternate pathways for completion of assignments.
- Provide feedback utilizing a growth mindset and praise what is done correctly based upon effort, attitude and strategy.
- Boost engagement with material by providing opportunities of differentiation, group work and alternative assignments/assessments where appropriate.

ELL

- Provide additional wait time for student responses to questions to allow students the ability to undergo the process of translation between languages, composition of response and attempted response.
- Simplification of sentence structure and repetition of questions/sentences exactly as stated before trying to rephrase to allow ELL students to hear the sentence and try to comprehend it.
- Rephrase idioms and teach their meanings as when learning a new language, translations are often very literal. IE "Take a stab at it." Ensure students understand what is meant.
- Use directed reading activities. Ensure preview of text before assigned/read, provide pre-reading questions about the main idea and offer help utilizing key words.
- Allow the use of Google Translate where appropriate.
- Utilize bilingual reading texts provided by the STC program.

G/T

Utilize differentiation in the areas of acceleration, enrichment, and grouping. Examples include, but are not limited to:

- interdisciplinary and problem-based assignments with planned scope and sequence
- advance, accelerated, or compacted content
- abstract and advanced higher-level thinking
- allowance for individual student interests
- assignments geared to development in areas of affect, creativity, cognition, and research skills
- complex, in-depth assignments
- diverse enrichment that broadens learning
- variety in types of resources
- internships, mentorships and independent study where applicable

504/IEP

Modifications and accommodations must be aligned to stated plan and uphold expectations of the plan lawfully. Every student requires a different set of accommodations based upon need. Examples specific to science practice include, but are not limited to:

Note taker or lab assistant

Group lab assignments

Use of scribe

Adjustable tables and lab equipment within reach

Classrooms, labs and field trips in accessible locations

Additional time and separate room for test taking

Additional time for in-class assignments

Additional time in lab

Visual and tactile instructional demonstrations

Computer with voice output, spelling and grammar checker

Seating in the front of the class

Tactile drawings and graphs, and three-dimensional models

Assignments in electronic format

Large-print handouts, lab signs and equipment labels

TV monitor connected to microscope to enlarge images

Computer equipped to enlarge screen characters and images

Auditory lab warning signals Adaptive lab equipment (talking calculators, talking thermometers, light probes, tactile timers) Staples on sticks to indicate units of measurement Visual warning system for lab emergencies

21ST CENTURY LIFE AND CAREER STANDARDS

Please select all standards that apply to this unit of study:

- \checkmark Act as a responsible and contributing citizen and employee.
- ✓ Apply appropriate academic and technical skills.
- Attend to personal health and financial well being.
- ✓ Communicate clearly and effectively and with reason.
- ✓ Consider the environmental social and economic impacts of decisions.
- ✓ Demonstrate creativity and innovation.
- ✓ Employ valid and reliable research strategies.
- ✓ Utilize critical thinking to make sense of problems and persevere in solving them.
- ✓ Model integrity, ethical leadership, and effective management.
- ✓ Plan education and career paths aligned to personal goals.
- ✓ Use technology to enhance productivity.
- ✓ Work productively in teams while using cultural global competence.

Suggestions on integrating these standards can be found at: http://www.state.nj.us/education/cccs/2014/career/9.pdf

LINKS TO CAREERS:

Career Applications and Exploration: Mechanics I

Unit 2

Mechanics II

Summary and Rationale

Mechanics II builds upon the principles established in Unit I: Mechanics I. The same laws and principles apply but the type of motion studied is circular motion about internal and external axes, and the law of universal gravitation is introduced. Rotational mechanics, gravitational forces, center of mass, gravitational interactions, and satellite motion are included in the unit. As a result, in this unit of study, in addition to applying the laws of Newton and Coulomb, students *use mathematical and computational thinking* to examine the processes governing the workings of the solar system and universe. The crosscutting concepts of *scale, proportion, and quantity* are called out as organizing concepts for these disciplinary core ideas. Students are expected to demonstrate proficiency in *using mathematical and computational thinking* of core ideas.

In application to rotational mechanics, students are expected to *plan and conduct investigations*, *analyze data and using math to support claims*, and *apply scientific ideas to solve design problems* students in order to develop an

understanding of ideas related to why some objects keep moving and some objects fall to the ground. Students will also build an understanding of forces and Newton's second law. Finally, they will develop an understanding that the total momentum of a system of objects is conserved when there is no net force on the system. Students are also able to apply science and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. The crosscutting concepts of *patterns*, *cause and effect*, and *systems and systems models* are called out as organizing concepts for these disciplinary core ideas. Students are expected to demonstrate proficiency in *planning and conducting investigations*, *analyzing data and using math to support claims*, and *applying scientific ideas to solve design problems* and to use these practices to demonstrate an understanding of the core ideas.

Students plan and conduct investigations and apply scientific ideas to make sense of Newton's law of gravitation and Coulomb's Law. They apply these laws to describe and predict the gravitational and electrostatic forces between objects. The crosscutting concept of *patterns* is called out as an organizing concept for this disciplinary core idea. Students are expected to demonstrate proficiency in *planning and conducting investigations* and *applying scientific ideas* to demonstrate an understanding of core ideas.

The disciplinary core idea of *Energy* is broken down into subcore ideas: *definitions of energy, conservation of energy* and *energy transfer*, and *the relationship between energy and forces*. Energy is understood as a quantitative property of a system that depends on the motion and interactions of matter, and the total change of energy in any system is equal to the total energy transferred into and out of the system. Students also demonstrate their understanding of engineering principles when they design, build, and refine devices associated with the conversion of energy. The crosscutting concepts of *cause and effect, systems and systems models, energy and matter, and the influence of science, engineering, and technology on society and the natural world* are further developed in the performance expectations. Students are expected to demonstrate proficiency in *developing and using models, planning and carrying out investigations, using computational thinking and designing solutions*, and they are expected to use these practices to demonstrate understanding of core ideas.

Recommended Pacing

6 weeks

Standards		
HS-PS2-1	Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration	
HS-PS2-2	Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.	
HS-PS2-3	Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision	
HS-PS2-4	Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.	
HS-ETS1-1	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants	
HS-ETS1-2	Design a solution to a complex real-world problem by breaking it down into smaller, more	

	manageable problems that can be solved through engineering
HS-ETS1-3	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts
HS-ETS1-4	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem
HS-PS3-1	Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known
HS-PS3-2	Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects)
HS-PS3-3	Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.
HS-ESS1-4	Use mathematical or computational representations to predict the motion of orbiting objects in the solar system
Interdisciplinary	Connections
NJSLSA.R1	Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
NJSLSA.R2	
	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.
RI.11-12.1 RI.9-10.1	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas. Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain.
RI.11-12.1 RI.9-10.1 NJSLSA.W1	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas. Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain. Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence
RI.11-12.1 RI.9-10.1 NJSLSA.W1 MP.2	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas. Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain. Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence Reason abstractly and quantitatively
RI.11-12.1 RI.9-10.1 NJSLSA.W1 MP.2 MP.4	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas. Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain. Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence Reason abstractly and quantitatively Model with mathematics
RI.11-12.1 RI.9-10.1 NJSLSA.W1 MP.2 MP.4 HSN.Q.A.1	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas. Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain. Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence Reason abstractly and quantitatively Model with mathematics Use units as a way to understand problems and to guide the solution of mult-istep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

Integration of Technology		
8.1	All students will use digital tools to access solve problems individually and collaboration	as, manage, evaluate, and synthesize information in order to ate and create and communicate knowledge
8.2	8.2 All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment	
Evidence of Lea	arning (Assessments)	
End of Unit 2 Assessment: Mechanics II Various Formative Assessments Unit Benchmarks		
	Instructio	nal Focus
Enduring Unde	rstandings:	Essential Questions:
The motion of objects undergoing rotation or revolution can be described using mathematical relationships derived from Newton's laws of motion. Concepts of rotational motion can be applied equally to everyday rotational motion such as wheels, cars, and centrifuges; and large scale objects such as planetary systems and galaxies		How do bodies and systems undergoing circular motion behave? How is the center of gravity used to describe motion of matter? How does torque affect the rotation of objects? How do gravitational fields affect satellite motion? How are balanced torques calculated? How does gravity affect matter?
	Suggested Resource	s/Technology Tools
www.khanacade Math Sets Videos Instructional Sup Laboratory Inves Stripping Centrip Torque Lab. Gravity using a H Photo gates Logger Pro Softw <u>phet Colorado</u> <u>Planetary Orbits</u> <u>Gravity Force La</u> <u>Kepler Activities</u>	my.org oplements stigations petal Force from Circular Motion Lab Pendulum Lab. ware Lab ab	
Modifications		
Teachers can choose from any of the suggested modifications below based upon teaching style, learner need and instructional practices.		

General Modifications for students struggling to learn:

- Focus on building relationships in the classroom.
- Control the stressors for the student and manage alternate pathways for completion of assignments.
- Provide feedback utilizing a growth mindset and praise what is done correctly based upon effort, attitude and strategy.
- Boost engagement with material by providing opportunities of differentiation, group work and alternative assignments/assessments where appropriate.

ELL

- Provide additional wait time for student responses to questions to allow students the ability to undergo the process of translation between languages, composition of response and attempted response.
- Simplification of sentence structure and repetition of questions/sentences exactly as stated before trying to rephrase to allow ELL students to hear the sentence and try to comprehend it.
- Rephrase idioms and teach their meanings as when learning a new language, translations are often very literal. IE "Take a stab at it." Ensure students understand what is meant.
- Use directed reading activities. Ensure preview of text before assigned/read, provide pre-reading questions about the main idea and offer help utilizing key words.
- Allow the use of Google Translate where appropriate.
- Utilize bilingual reading texts provided by the STC program.

G/T

Utilize differentiation in the areas of acceleration, enrichment, and grouping. Examples include, but are not limited to:

- interdisciplinary and problem-based assignments with planned scope and sequence
- advance, accelerated, or compacted content
- abstract and advanced higher-level thinking
- allowance for individual student interests
- assignments geared to development in areas of affect, creativity, cognition, and research skills
- complex, in-depth assignments
- diverse enrichment that broadens learning
- variety in types of resources
- internships, mentorships and independent study where applicable

504/IEP

Modifications and accommodations must be aligned to stated plan and uphold expectations of the plan lawfully. Every student requires a different set of accommodations based upon need. Examples specific to science practice include, but are not limited to:

- Note taker or lab assistant
- Group lab assignments
- Use of scribe
- Adjustable tables and lab equipment within reach
- Classrooms, labs and field trips in accessible locations
- Additional time and separate room for test taking
- Additional time for in-class assignments
- Additional time in lab
- Visual and tactile instructional demonstrations
- Computer with voice output, spelling and grammar checker
- Seating in the front of the class
- Tactile drawings and graphs, and three-dimensional models
- Assignments in electronic format
- Large-print handouts, lab signs and equipment labels
- TV monitor connected to microscope to enlarge images
- Computer equipped to enlarge screen characters and images
- Auditory lab warning signals
- Adaptive lab equipment (talking calculators, talking thermometers, light probes, tactile timers)

- Staples on sticks to indicate units of measurement
- Visual warning system for lab emergencies

21ST CENTURY LIFE AND CAREER STANDARDS

Please select all standards that apply to this unit of study:

- ✓ Act as a responsible and contributing citizen and employee.
- ✓ Apply appropriate academic and technical skills.
- Attend to personal health and financial well being.
- ✓ Communicate clearly and effectively and with reason.
- ✓ Consider the environmental social and economic impacts of decisions.
- ✓ Demonstrate creativity and innovation.
- ✓ Employ valid and reliable research strategies.
- ✓ Utilize critical thinking to make sense of problems and persevere in solving them.
- ✓ Model integrity, ethical leadership, and effective management.
- ✓ Plan education and career paths aligned to personal goals.
- ✓ Use technology to enhance productivity.
- ✓ Work productively in teams while using cultural global competence.

Suggestions on integrating these standards can be found at: http://www.state.nj.us/education/cccs/2014/career/9.pdf

LINKS TO CAREERS:

Career Applications and Exploration: Mechanics II

Unit 3

Energy Studies I: Thermodynamics

Summary and Rationale

In this unit of study, students *develop and use models, plan and carry out investigations, use computational thinking and design solutions* as they make sense of the disciplinary core idea. The disciplinary core idea of *Energy* is broken down into subcore ideas: *definitions of energy, conservation of energy* and *energy transfer*, and *the relationship between energy and forces*. Energy is understood as a quantitative property of a system that depends on the motion and interactions of matter, and the total change of energy in any system is equal to the total energy transferred into and out of the system. Students also demonstrate their understanding of engineering principles when they design, build, and refine devices associated with the conversion of energy. The crosscutting concepts of *cause and effect, systems and systems models, energy and matter, and the influence of science, engineering, and technology on society and the natural world* are further developed in the performance expectations. Students are expected to demonstrate proficiency in *developing and using models, planning and carry out investigations, using computational thinking and designing solutions*, and they are expected to use these practices to demonstrate understanding of core ideas.

This unit accomplishes the tasks above by examining the area of thermodynamics. It encompasses the study of energy transfer in the form of heat. The topics include temperature, phase change, specific heat, thermal expansion, heat engines, and the laws of thermodynamics.

Recommended Pacing

5 weeks		
	Standards	
HS-PS2-4	Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.	
HS-ETS1-1	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants	
HS-ETS1-2	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering	
HS-ETS1-3	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts	
HS-ETS1-4	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem	
HS-PS3-1	Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known	
HS-PS3-2	Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects)	
HS-PS3-3	Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.	

Interdisciplinary Connections		
NJSLSA.R1	Read closely to determine what the connections from it; cite specific ter drawn from the text.	text says explicitly and to make logical inferences and relevant xtual evidence when writing or speaking to support conclusions
NJSLSA.R2	Determine the central ideas or them supporting details and ideas.	es of a text and analyze their development; summarize the key
RI.11-12.1 RI.9-10.1	Accurately cite strong and thorough support analysis of what the text say the text leaves matters uncertain.	a textual evidence, (e.g., via discussion, written response, etc.), to ys explicitly as well as inferentially, including determining where
NJSLSA.W1	Write arguments to support claims and relevant and sufficient evidence	in an analysis of substantive topics or texts, using valid reasoning
MP.2	Reason abstractly and quantitatively	
MP.4	Model with mathematics	
HSN.Q.A.1	Use units as a way to understand problems and to guide the solution of mult-istep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	
HSN.Q.A.2	Define appropriate quantities for the purpose of descriptive modeling.	
Integration of Technology		
8.1	All students will use digital tools to solve problems individually and co	o access, manage, evaluate, and synthesize information in order to llaborate and create and communicate knowledge
8.2	All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment	
Evidence of Learning (Assessments)		
End of Unit 3 Assessment: Thermodynamics Various Formative Assessments Unit Benchmarks		
	Instr	uctional Focus
Enduring Under	rstandings:	Essential Questions:

Energy transferred between objects as a result of	How are temperature, heat, and expansion of materials related?
temperature differences is called heat. These	How is heat transferred?
transfers of energy can result in phase change,	What causes change of phase and what are its effects?
thermal expansion, and transformation into	How do the laws of thermodynamics describe processes
mechanical work. The observed phenomena can be	involving heat transfer?
explained by using atomic and molecular concepts.	How is the efficiency of heat engines calculated?
The field of thermodynamics is described by three	
laws	

Suggested Resources/Technology Tools

www.khanacademy.org

Math Sets

Videos

Instructional Supplements

Laboratory Investigations

<u>Elabs</u>

Solar House

Heat and Thermo Labs

Leslie's cube experiment IE - <u>https://www.3bscientific.com/PhysicsExperiments/UE2020200_EN.pdf</u> Heat of fusion of water experiment

Modifications

Teachers can choose from any of the suggested modifications below based upon teaching style, learner need and instructional practices.

General Modifications for students struggling to learn:

- Focus on building relationships in the classroom.
- Control the stressors for the student and manage alternate pathways for completion of assignments.
- Provide feedback utilizing a growth mindset and praise what is done correctly based upon effort, attitude and strategy.
- Boost engagement with material by providing opportunities of differentiation, group work and alternative assignments/assessments where appropriate.

ELL

- Provide additional wait time for student responses to questions to allow students the ability to undergo the process of translation between languages, composition of response and attempted response.
- Simplification of sentence structure and repetition of questions/sentences exactly as stated before trying to rephrase to allow ELL students to hear the sentence and try to comprehend it.
- Rephrase idioms and teach their meanings as when learning a new language, translations are often very literal. IE "Take a stab at it." Ensure students understand what is meant.
- Use directed reading activities. Ensure preview of text before assigned/read, provide pre-reading questions about the main idea and offer help utilizing key words.
- Allow the use of Google Translate where appropriate.
- Utilize bilingual reading texts provided by the STC program.

G/T

Utilize differentiation in the areas of acceleration, enrichment, and grouping. Examples include, but are not limited to:

- interdisciplinary and problem-based assignments with planned scope and sequence
- advance, accelerated, or compacted content
- abstract and advanced higher-level thinking
- allowance for individual student interests

- assignments geared to development in areas of affect, creativity, cognition, and research skills
- complex, in-depth assignments
- diverse enrichment that broadens learning
- variety in types of resources
- internships, mentorships and independent study where applicable

504/IEP

Modifications and accommodations must be aligned to stated plan and uphold expectations of the plan lawfully. Every student requires a different set of accommodations based upon need. Examples specific to science practice include, but are not limited to:

- Note taker or lab assistant
- Group lab assignments
- Use of scribe
- Adjustable tables and lab equipment within reach
- Classrooms, labs and field trips in accessible locations
- Additional time and separate room for test taking
- Additional time for in-class assignments
- Additional time in lab
- Visual and tactile instructional demonstrations
- Computer with voice output, spelling and grammar checker
- Seating in the front of the class
- Tactile drawings and graphs, and three-dimensional models
- Assignments in electronic format
- Large-print handouts, lab signs and equipment labels
- TV monitor connected to microscope to enlarge images
- Computer equipped to enlarge screen characters and images
- Auditory lab warning signals
- Adaptive lab equipment (talking calculators, talking thermometers, light probes, tactile timers)
- Staples on sticks to indicate units of measurement
- Visual warning system for lab emergencies

21ST CENTURY LIFE AND CAREER STANDARDS

Please select all standards that apply to this unit of study:

- ✓ Act as a responsible and contributing citizen and employee.
- ✓ Apply appropriate academic and technical skills.
- Attend to personal health and financial well being.
- ✓ Communicate clearly and effectively and with reason.
- ✓ Consider the environmental social and economic impacts of decisions.
- ✓ Demonstrate creativity and innovation.
- ✓ Employ valid and reliable research strategies.
- ✓ Utilize critical thinking to make sense of problems and persevere in solving them.
- ✓ Model integrity, ethical leadership, and effective management.
- ✓ Plan education and career paths aligned to personal goals.
- ✓ Use technology to enhance productivity.
- ✓ Work productively in teams while using cultural global competence.

Suggestions on integrating these standards can be found at: http://www.state.nj.us/education/cccs/2014/career/9.pdf

LINKS TO CAREERS:

Career Applications and Exploration: Thermodynamics

Unit 4

Energy Studies II: Waves

Summary and Rationale

In this unit of study, students apply their understanding of how wave properties can be used to transfer information across long distances, store information, and investigate nature on many scales. The crosscutting concept of *cause and effect* is highlighted as an organizing concept for these disciplinary core ideas. Students are expected to demonstrate proficiency in *using mathematical thinking*, and to use this practice to demonstrate an understanding of the core idea. In order to achieve this concept of periodic motion such as vibrations and mechanical waves are learned. The idea of energy transfer without the transfer of matter through waves is introduced. The concepts learned in studying mechanical waves are applied to sound and electromagnetic waves. The properties of electromagnetic waves including color, interference, and geometric optics are also studied as students are able to apply their understanding of wave properties to make sense of how electromagnetic radiation can be used to transfer information across long distances, store information, and be used to investigate nature on many scales. Models of electromagnetic radiation as both a wave of changing electrical and magnetic fields or as particles are developed and used. Students also demonstrate their understanding of engineering ideas by presenting information about how technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy. The crosscutting concepts of systems and system models; stability and change; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are highlighted as organizing concepts. Students are expected to demonstrate proficiency in asking questions, engaging in argument from evidence, and obtaining, evaluating, and communicating information, and they are expected to use these practices to demonstrate an understanding of the core ideas.

Recommended Pacing

5 weeks

	Standards	
MS-PS4-1	Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media	
HS-PS4-2	Evaluate questions about the advantages of using a digital transmission and storage of information	
HS-PS4-3	Evaluate the claims, evidence, and the reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other	
HS-PS4-4	Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter	

HS-PS4-5	Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.			
HS-ETS1-1	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants			
HS-ETS1-3	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts			
Interdisciplinary Connections				
NJSLSA.R1	Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.			
NJSLSA.R2	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.			
RI.11-12.1 RI.9-10.1	Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain.			
NJSLSA.W1	Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence			
MP.2	Reason abstractly and quantitatively			
MP.4	Model with mathematics			
HSN.Q.A.1	Use units as a way to understand problems and to guide the solution of mult-istep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.			
HSN.Q.A.2	Define appropriate quantities for the purpose of descriptive modeling.			
Integration of Technology				
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and create and communicate knowledge			
8.2	All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment			
Evidence of Learning (Assessments)				

End of Unit 4 Assessment: Wave Properties Various Formative Assessments Unit Benchmarks

Instructional Focus

Enduring Understandings:	Essential Questions:	
Waves can transmit energy between locations without the movement of matter between the locations. Mechanical waves travel through matter only, while electromagnetic waves travel both through matter, and vacuum. Waves can interact with matter and other waves resulting in phenomena such as interference patterns, and optical effects. Sound and optical phenomena can be explained using principles inherent in wave motion.	 What are waves, and how do they interact with matter? How can the reflection of sound waves be controlled? How do mirrors form images? How do lenses form images? How do waves form interference patterns? 	
Suggested Resources/Technology Tools		

www.khanacademy.org Math Sets Videos **Instructional Supplements** Laboratory Investigations Waves on a String Wave Interference Resonance Tube Sound Waves Doppler Effect Refraction Through Glass Imagine the Universe Radio Waves and EM Fields Photoelectric Effect Phet Thin Film Interference Photoelectric Effect OSP Interaction of Molecules with EMR Quantum Wave Interference (Duality) Exploring X-Rays Pendulum construction to investigate periodic motion. Speed of sound using resonance. Investigation of images formed by mirrors. Investigation of images formed by lenses. Bright line spectra experiment. Thin film interference experiment. Camera obscura.

Modifications

Teachers can choose from any of the suggested modifications below based upon teaching style, learner need and instructional practices.

General Modifications for students struggling to learn:

- Focus on building relationships in the classroom.
- Control the stressors for the student and manage alternate pathways for completion of assignments.
- Provide feedback utilizing a growth mindset and praise what is done correctly based upon effort, attitude and strategy.
- Boost engagement with material by providing opportunities of differentiation, group work and alternative assignments/assessments where appropriate.

ELL

- Provide additional wait time for student responses to questions to allow students the ability to undergo the process of translation between languages, composition of response and attempted response.
- Simplification of sentence structure and repetition of questions/sentences exactly as stated before trying to rephrase to allow ELL students to hear the sentence and try to comprehend it.
- Rephrase idioms and teach their meanings as when learning a new language, translations are often very literal. IE "Take a stab at it." Ensure students understand what is meant.
- Use directed reading activities. Ensure preview of text before assigned/read, provide pre-reading questions about the main idea and offer help utilizing key words.
- Allow the use of Google Translate where appropriate.
- Utilize bilingual reading texts provided by the STC program.

G/T

Utilize differentiation in the areas of acceleration, enrichment, and grouping. Examples include, but are not limited to:

- interdisciplinary and problem-based assignments with planned scope and sequence
- advance, accelerated, or compacted content
- abstract and advanced higher-level thinking
- allowance for individual student interests
- assignments geared to development in areas of affect, creativity, cognition, and research skills
- complex, in-depth assignments
- diverse enrichment that broadens learning
- variety in types of resources
- internships, mentorships and independent study where applicable

504/IEP

Modifications and accommodations must be aligned to stated plan and uphold expectations of the plan lawfully. Every student requires a different set of accommodations based upon need. Examples specific to science practice include, but are not limited to:

- Note taker or lab assistant
- Group lab assignments
- Use of scribe
- Adjustable tables and lab equipment within reach
- Classrooms, labs and field trips in accessible locations
- Additional time and separate room for test taking
- Additional time for in-class assignments
- Additional time in lab
- Visual and tactile instructional demonstrations
- Computer with voice output, spelling and grammar checker
- Seating in the front of the class
- Tactile drawings and graphs, and three-dimensional models
- Assignments in electronic format
- Large-print handouts, lab signs and equipment labels
- TV monitor connected to microscope to enlarge images
- Computer equipped to enlarge screen characters and images

- Auditory lab warning signals
- Adaptive lab equipment (talking calculators, talking thermometers, light probes, tactile timers)
- Staples on sticks to indicate units of measurement
- Visual warning system for lab emergencies

21ST CENTURY LIFE AND CAREER STANDARDS

Please select all standards that apply to this unit of study:

- \checkmark Act as a responsible and contributing citizen and employee.
- ✓ Apply appropriate academic and technical skills.
- Attend to personal health and financial well being.
- ✓ Communicate clearly and effectively and with reason.
- ✓ Consider the environmental social and economic impacts of decisions.
- ✓ Demonstrate creativity and innovation.
- ✓ Employ valid and reliable research strategies.
- ✓ Utilize critical thinking to make sense of problems and persevere in solving them.
- ✓ Model integrity, ethical leadership, and effective management.
- \checkmark Plan education and career paths aligned to personal goals.
- ✓ Use technology to enhance productivity.
- ✓ Work productively in teams while using cultural global competence.

Suggestions on integrating these standards can be found at: http://www.state.nj.us/education/cccs/2014/career/9.pdf

LINKS TO CAREERS:

Career Applications and Exploration: Energy and Waves

Unit 5

Electricity and Magnetism

Summary and Rationale

In this unit of study, students are able to apply their understanding of wave properties to make sense of how electromagnetic radiation can be used to transfer information across long distances, store information, and be used to investigate nature on many scales. Models of electromagnetic radiation as both a wave of changing electrical and magnetic fields or as particles are developed and used. Students also demonstrate their understanding of engineering ideas by presenting information about how technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy. The crosscutting concepts of *systems and system models*; *stability and change*; *interdependence of science*, *engineering*, *and technology*; *and influence of engineering*, *technology*, *and science on society and the natural world* are highlighted as organizing concepts. Students are expected to demonstrate proficiency in *asking questions*, *engaging in argument from evidence*, *and obtaining*, *evaluating*, *and communicating information*, and they are expected to use these practices to demonstrate an understanding of the core ideas.

In order to achieve the desired outcomes listed above, this unit focuses on electric and magnetic charges and fields. Topics studied are: origin of electric charges, their interaction with each other, the generation of magnetic fields by

moving electric charges, the interactions between moving electric charges and magnetic fields, and the application of these interactions in science and technology.

Recommended Pacing

5 weeks

5 weeks				
Standards				
HS-PS2-4	Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.			
HS-PS4-2	Evaluate questions about the advantages of using a digital transmission and storage of information			
HS-PS4-3	Evaluate the claims, evidence, and the reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other			
HS-PS4-4	Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter			
HS-PS4-5	Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.			
HS-ETS1-1	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants			
HS-ETS1-3	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts			
Interdisciplinary	Connections			
NJSLSA.R1	Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.			
NJSLSA.R2	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.			
RI.11-12.1 RI.9-10.1	Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain.			
NJSLSA.W1	Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence			
MP.2	Reason abstractly and quantitatively			
MP.4	Model with mathematics			

HSN.Q.A.1	Use units as a way to understand problems and to guide the solution of mult-istep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.			
HSN.Q.A.2	Define appropriate quantities for the purpose of descriptive modeling.			
Integration of Technology				
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and create and communicate knowledge			
8.2	All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment			
Evidence of Lea	rning (Assessments)			
End of Unit 4 Assessment: Wave Properties Various Formative Assessments Unit Benchmarks				
Instructional Focus				
Enduring Under	rstandings:	Essential Questions:		
Electric charge is that affects its int systems containin electric charge, p examples of posin electrons are exan objects. Neutral of whose net charge charge of a proto this is the smalles an isolated object all known proces movement of elec currents, which in	a property of an object or system eractions with other objects or ng charge. There are two types of ositive and negative. Protons are tively charged objects, and mples of negatively charged objects and systems are ones is zero. The magnitudes of the n and an electron are equal, and st unit of charge that is found in t. Electric charge is conserved in ses and interactions. The ctric charge creates electric n turn create magnetic fields.	What are electrical forces charges? What is meant by conservation of charge? What is Coulomb's Law? How can objects be charged? What is charge polarization?		
Suggested Resources/Technology Tools				
www.khanacademy.org Math Sets Videos Instructional Supplements Laboratory Investigations <u>Magnets and Electromagnets</u> <u>Charges and Fields</u> <u>Faraday's Law</u>				

Static cling – static electricity Simple circuits Parallel and serial circuits. Jump rope generator – electromagnetic induction. Magnetic field investigations.

Modifications

Teachers can choose from any of the suggested modifications below based upon teaching style, learner need and instructional practices.

General Modifications for students struggling to learn:

- Focus on building relationships in the classroom.
- Control the stressors for the student and manage alternate pathways for completion of assignments.
- Provide feedback utilizing a growth mindset and praise what is done correctly based upon effort, attitude and strategy.
- Boost engagement with material by providing opportunities of differentiation, group work and alternative assignments/assessments where appropriate.

ELL

- Provide additional wait time for student responses to questions to allow students the ability to undergo the process of translation between languages, composition of response and attempted response.
- Simplification of sentence structure and repetition of questions/sentences exactly as stated before trying to rephrase to allow ELL students to hear the sentence and try to comprehend it.
- Rephrase idioms and teach their meanings as when learning a new language, translations are often very literal. IE "Take a stab at it." Ensure students understand what is meant.
- Use directed reading activities. Ensure preview of text before assigned/read, provide pre-reading questions about the main idea and offer help utilizing key words.
- Allow the use of Google Translate where appropriate.
- Utilize bilingual reading texts provided by the STC program.

G/T

- Utilize differentiation in the areas of acceleration, enrichment, and grouping. Examples include, but are not limited to:
- interdisciplinary and problem-based assignments with planned scope and sequence
- advance, accelerated, or compacted content
- abstract and advanced higher-level thinking
- allowance for individual student interests
- assignments geared to development in areas of affect, creativity, cognition, and research skills
- complex, in-depth assignments
- diverse enrichment that broadens learning
- variety in types of resources
- internships, mentorships and independent study where applicable

504/IEP

Modifications and accommodations must be aligned to stated plan and uphold expectations of the plan lawfully. Every student requires a different set of accommodations based upon need. Examples specific to science practice include, but are not limited to:

- Note taker or lab assistant
- Group lab assignments
- Use of scribe
- Adjustable tables and lab equipment within reach
- Classrooms, labs and field trips in accessible locations
- Additional time and separate room for test taking
- Additional time for in-class assignments

- Additional time in lab
- Visual and tactile instructional demonstrations
- Computer with voice output, spelling and grammar checker
- Seating in the front of the class
- Tactile drawings and graphs, and three-dimensional models
- Assignments in electronic format
- Large-print handouts, lab signs and equipment labels
- TV monitor connected to microscope to enlarge images
- Computer equipped to enlarge screen characters and images
- Auditory lab warning signals
- Adaptive lab equipment (talking calculators, talking thermometers, light probes, tactile timers)
- Staples on sticks to indicate units of measurement
- Visual warning system for lab emergencies

21ST CENTURY LIFE AND CAREER STANDARDS

Please select all standards that apply to this unit of study:

- \checkmark Act as a responsible and contributing citizen and employee.
- ✓ Apply appropriate academic and technical skills.
- Attend to personal health and financial well being.
- ✓ Communicate clearly and effectively and with reason.
- ✓ Consider the environmental social and economic impacts of decisions.
- ✓ Demonstrate creativity and innovation.
- ✓ Employ valid and reliable research strategies.
- ✓ Utilize critical thinking to make sense of problems and persevere in solving them.
- ✓ Model integrity, ethical leadership, and effective management.
- ✓ Plan education and career paths aligned to personal goals.
- ✓ Use technology to enhance productivity.
- ✓ Work productively in teams while using cultural global competence.

Suggestions on integrating these standards can be found at: http://www.state.nj.us/education/cccs/2014/career/9.pdf

LINKS TO CAREERS:

Career Applications and Exploration: Electricity and Magnetism

Unit 6

Relationships: Physics and our Earth

Summary and Rationale

In this unit of study, students construct explanations for the scales of time over which Earth processes operate. An important aspect of Earth and space sciences involves making inferences about events in Earth's history based on a data record that is increasingly incomplete the farther one goes back in time. A mathematical analysis of radiometric dating is used to comprehend how absolute ages are obtained for the geologic record. Students develop *models and explanations* for the ways that feedback among different Earth systems controls the appearance of the Earth's surface. Central to this is the tension between internal systems, which are largely responsible for creating land at Earth's surface

(e.g., volcanism and mountain building), and the sun-driven surface systems that tear down land through weathering and erosion. Students demonstrate proficiency in *developing and using models, constructing explanations, and engaging in argument from evidence.* The crosscutting concepts of *stability and change, energy and matter, and patterns* are called out as organizing elements of this unit.

3 weeks				
Standards				
HS-ESS2-1	Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features			
HS-ESS2-2	Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems			
HS-ESS2-3	Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection			
HS-ESS1-5	Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.			
Interdisciplinary Connections				
NJSLSA.R1	Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.			
NJSLSA.R2	Determine the central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.			
RI.11-12.1 RI.9-10.1	Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of what the text says explicitly as well as inferentially, including determining where the text leaves matters uncertain.			
NJSLSA.W1	Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence			
MP.2	Reason abstractly and quantitatively			
MP.4	Model with mathematics			
HSN.Q.A.1	Use units as a way to understand problems and to guide the solution of mult-istep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.			
HSN.Q.A.2	Define appropriate quantities for the purpose of descriptive modeling.			

Integration of Technology				
8.1	All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and create and communicate knowledge			
8.2	All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment			
Integration of T	echnology			
 Chromebooks Schoology Google Suite Online Simulations Laboratory Tools and Devices 				
Instructional Focus				
Enduring Understandings:		Essential Questions:		
Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth's surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within the Earth's crust. Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible.		How long to geological processes take to develop features of the Earth? IE - creation of a mountain What forces are responsible for moving continents? What is the origin of the force that is able to move continents? Are the rocks on the Earth all the same age? How can one change in an area of the earth affect other areas? IE - geosphere and atmosphere		
Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth's surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, and a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth's interior and gravitational movement of denser materials toward the interior. Geologists use seismic waves and their reflection at the interfaces between layers to probe structures deep in the planet.				

The radioactive decay of unstable isotopes continually generates new energy within Earth's crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection. Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less than 200 million years old. Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes.

The foundation for Earth's global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy's re-radiation into space.

Evidence of Learning (Assessments)

End of Unit 6 Assessment: Relationships: Physics and Our Earth Various Formative Assessments Unit Benchmarks

Objectives (SLO)

Students will know: Students will be able to: The timeline of geological processes on Earth. Study and develop models to illustrate understanding of the The forces at work within the Earth that result on development of sea-floor features. the visible features on the surface of the Earth. Study and develop models to explain resulting land and sea floor The origins of the forces that move earth's plates features from both constructive and destructive forces. and contribute to the Theory of Plate Tectonics. Understand the role of time in geological processes. The manner in which rocks and other objects on the Illustrate convection currents and the effect on plate movement Earth can be identified by radioactive decay or using a model that is driven by massive amounts of energy. absolute dating. Evaluate evidence of plate interactions and determination of the The results of actions in one of the Earth's layers age of crustal rocks. and how all of those actions affect one another.

Suggested Resources/Technology Tools

Earth's Geological and Climatic History Convection Currents Simulator Plate Tectonics Phet Volcanoes Sea Floor Spreading Earthquakes and the Theory of Plate Tectonics Mountain Formation Absolute Dating with MandM's

Modifications

Teachers can choose from any of the suggested modifications below based upon teaching style, learner need and instructional practices.

General Modifications for students struggling to learn:

- Focus on building relationships in the classroom.
- Control the stressors for the student and manage alternate pathways for completion of assignments.
- Provide feedback utilizing a growth mindset and praise what is done correctly based upon effort, attitude and strategy.
- Boost engagement with material by providing opportunities of differentiation, group work and alternative assignments/assessments where appropriate.

ELL

- Provide additional wait time for student responses to questions to allow students the ability to undergo the process of translation between languages, composition of response and attempted response.
- Simplification of sentence structure and repetition of questions/sentences exactly as stated before trying to rephrase to allow ELL students to hear the sentence and try to comprehend it.
- Rephrase idioms and teach their meanings as when learning a new language, translations are often very literal. IE "Take a stab at it." Ensure students understand what is meant.
- Use directed reading activities. Ensure preview of text before assigned/read, provide pre-reading questions about the main idea and offer help utilizing key words.
- Allow the use of Google Translate where appropriate.
- Utilize bilingual reading texts provided by the STC program.

G/T

Utilize differentiation in the areas of acceleration, enrichment, and grouping. Examples include, but are not limited to:

- interdisciplinary and problem-based assignments with planned scope and sequence
- advance, accelerated, or compacted content
- abstract and advanced higher-level thinking
- allowance for individual student interests
- assignments geared to development in areas of affect, creativity, cognition, and research skills
- complex, in-depth assignments
- diverse enrichment that broadens learning
- variety in types of resources
- internships, mentorships and independent study where applicable

504/IEP

Modifications and accommodations must be aligned to stated plan and uphold expectations of the plan lawfully. Every student requires a different set of accommodations based upon need. Examples specific to science practice include, but are not limited to:

- Note taker or lab assistant
- Group lab assignments
- Use of scribe
- Adjustable tables and lab equipment within reach
- Classrooms, labs and field trips in accessible locations
- Additional time and separate room for test taking
- Additional time for in-class assignments
- Additional time in lab
- Visual and tactile instructional demonstrations
- Computer with voice output, spelling and grammar checker
- Seating in the front of the class

- Tactile drawings and graphs, and three-dimensional models
- Assignments in electronic format
- Large-print handouts, lab signs and equipment labels
- TV monitor connected to microscope to enlarge images
- Computer equipped to enlarge screen characters and images
- Auditory lab warning signals
- Adaptive lab equipment (talking calculators, talking thermometers, light probes, tactile timers)
- Staples on sticks to indicate units of measurement
- Visual warning system for lab emergencies

21ST CENTURY LIFE AND CAREER STANDARDS

Please select all standards that apply to this unit of study:

- \checkmark Act as a responsible and contributing citizen and employee.
- ✓ Apply appropriate academic and technical skills.
- Attend to personal health and financial well being.
- ✓ Communicate clearly and effectively and with reason.
- ✓ Consider the environmental social and economic impacts of decisions.
- ✓ Demonstrate creativity and innovation.
- ✓ Employ valid and reliable research strategies.
- ✓ Utilize critical thinking to make sense of problems and persevere in solving them.
- ✓ Model integrity, ethical leadership, and effective management.
- ✓ Plan education and career paths aligned to personal goals.
- ✓ Use technology to enhance productivity.
- Work productively in teams while using cultural global competence.

Suggestions on integrating these standards can be found at: http://www.state.nj.us/education/cccs/2014/career/9.pdf

LINKS TO CAREERS:

Career Applications and Exploration: Earth's Processes